Moons of Earth and Saturn

The New York Times has kept me busy of late. In the special section commemorating the fiftieth anniversary of the Apollo 11 moon landing, I had two pieces: one on the future of the American astronaut corps, and another on the haunting restoration of the Apollo Mission Control at NASA Johnson Space Center. Another piece I am particularly proud of is the announcement of a mission to Titan, the mysterious moon of Saturn, and the only place in our solar system other than Earth with standing liquid seas.

Image credit: The New York Times

Image credit: The New York Times

NASA Announces New Dragonfly Drone Mission to Explore Titan
(The New York Times)

Because of the nature of its atmosphere, Titan is a very Earthlike place. Chemically, it is much like our world’s primordial past. The surface pressure of Titan is one-and-a-half times the surface pressure of Earth, and the same sorts of interactions between air, land and sea take place. Titan thus has familiar geology. Methane on Titan plays the role that water plays here. Its methane cycle is analogous to Earth’s water cycle. It has methane clouds, methane rain and methane lakes and seas on the surface.

“There’s going to be a tremendous change in the fabric of how we see Titan as a world,” said Dr. Ralph Lorenz of Applied Physics Laboratory, the Dragonfly project scientist in an April interview. He predicted that features of Titan will be, “recognizable, but different in flavor from what you see on Earth and Mars.”

That might include the things that wiggle. Complex organic molecules fall from its atmosphere onto the surface of Titan, gather over long periods of time and can be processed further. If cryovolcanoes erupt on Titan’s surface, as data from the Cassini spacecraft suggests, the organic material can mix with liquid water. Sunlight, at the same time, drives the moon’s photochemistry, introducing energy to a system primed for life.

NASA Reopens Apollo Mission Control Room That Once Landed Men on Moon
(The New York Times)

Apollo mission control had been abandoned in 1992, with all operations moved to a modernized mission control center elsewhere in the building. Center employees, friends, family — and anyone, really, who had access to Building 30 — could walk in, take a seat, take a lunch break and take pictures.

While they were there, they might take a button from one of the computer consoles. Or a switch or a dial, anything small — a personal memento from an ancient American achievement. The furniture fabric and carpet underfoot grew threadbare. The room was dark; none of the equipment had power. Wires hung where rotary phones had once sat. The giant overhead screens in front of the room were damaged, and the room smelled of mildew. Yellow duct tape held carpet together in places.

“You knew it wasn’t right — you just knew,” said Sandra Tetley, the historic preservation officer at the Johnson Space Center. “But it was not a priority. We are an organization that’s moving toward the future, so there is not a budget to do things like this.”

The project began in earnest six years ago. The anniversary loomed, and that was the catalyst to fix up mission control, and to do it right. “We wanted to meet a high standard to restore it, and we were able to meet this 50th anniversary,” Ms. Tetley said.

As New Space Race Beckons, Astronauts Face Identity Crisis
(The New York Times)

Christopher Ferguson trains from 8 a.m. to 8 p.m. at NASA’s Johnson Space Center in Houston. A recent day for him was typical: five hours in a launch simulation with the mission operations team. He trained alongside Sunita Williams, herself a two-time space flier and veteran of the space station.

Halfway through the session, the two swapped roles, preparing for situations that might arise on an actual mission. The balance of the day was spent planning timeline management when inserting a crew into a rocket, so that when the hatch closes, all the right things are on the inside, and all the right things are on the outside.

The difference between Mr. Ferguson and Ms. Williams is that Mr. Ferguson does not work for NASA. He works for Boeing and will fly on the first crewed mission of Starliner. Boeing and SpaceX are part of Commercial Crew, a NASA-supported program that has tasked American companies with building spacecraft capable of carrying astronauts to the space station. NASA has relied on Russia’s space program for launching astronauts since the last shuttle returned to Earth in 2011.

A Few Happenings in the Cosmos

While covering the 47th Lunar and Planetary Science Conference in The Woodlands, Texas last month, I wrote several pieces on various happenings and findings in and about our solar system. Here are a few snippets of pieces that resulted, published by mental_floss. (And let me just add that if you've never had to explain nuclear spectroscopy for a general readership, you just haven't lived yet.) Every Inch of Ceres Is Now Mapped—and Yet Mysteries Remain

Dawn is loaded with delicate instruments to help decipher the dwarf planet's secrets. The Gamma Ray and Neutron Detector (GRaND) maps elements on the asteroid so that scientists can make sense of the surface and processes at work. The instrument works like this. Galactic cosmic rays smack into the regolith (the loose surface layer; on Earth, think: dirt), and interactions with the surface lead to emissions of neutrons and gamma rays. GRaND detects these emissions as they bounce into space. Neutrons at different energy levels correspond to different surface elements.

During the regolith interaction, when the cosmic rays hit the nucleus of an atom, the nucleus explodes, sending neutrons and protons in all directions. Some neutrons escape the regolith, some smash into other nuclei. Here's where it gets interesting. If a neutron hits the nucleus of a hydrogen atom, it loses energy in the interaction, similar to the way a cue ball stops when it hits another ball in a game of pool. When GRaND is counting neutrons, therefore, lower numbers suggest more hydrogen.

That's what is shown on the above map [not pictured in this blog snippet—dwb], which is color-coded for the presence of hydrogen. (Blue is more; red is less.) The area in blue is the north pole of Ceres, and as the map reveals, it's teeming with hydrogen, relatively speaking. This indicates the presence of water ice—H2O—near the dwarf planet’s surface. This is the first time such ice has been detected, and the finding is consistent with longstanding scientific predictions. Planetary scientists will continue analyzing the data collected by GRaND and other instruments in order to better understand the origin and evolution of Ceres.

5 Space Missions Under NASA Consideration

You have to admire the effort it took to build the acronym VERITAS, which is short for Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy. VERITAS is a proposed mission to visit Venus and figure out where things went so wrong. Above the clouds, Venus is far more hospitable to humans than Mars. Its temperature and weather aren't all that different from Earth, and scientists have proposed colonizing Venus with a series of airships. Below the clouds, however, Venus is a living hell. With surface temperatures near 900°F, it's hotter than Mercury, and its south pole is consumed by a rapacious, undying superstorm. The questions VERITAS intends to answer involve the state of Venus's geologic activity; its tectonic characteristics in comparison to Earth; and the evidence of past water at its surface.

[Blog note: My favorite line in the piece was cut, and I'll share it here: "Venus is the place where people in hell are afraid they'll go when the die."]

What is an Ice Volcano?

Think back to the volcano diorama you made in grade school. Little mountain, maybe trees and plastic dinosaurs (because every grade school project is improved with dinosaurs). In our model, red food coloring, baking soda, and vinegar are meant to simulate what's going on when a volcano erupts. Magma, which is molten rock and volatiles, builds up pressure until the ground gives way and it spews forth from vents in the Earth's surface.

This sometimes looks like the occasional, seemingly apocalyptic eruptions of Volcán de Colima in Mexico. Sometimes it looks like the gentle flows in the Pacific islands where you can hire a tour guide and observe lava streams as they roll along.

A cryovolcano isn't all that different. Like an Earth volcano, it results from pressure beneath a celestial surface. Rather than molten rock, however cryovolcanoes are the eruptions of molten ice, sometimes called cryomagma. Ice volcanoes can erupt violently or flow gently, just like the volcanoes on Earth. The gentle "tour guide" eruptions are believed to be like flowing slurries.

[Blog note: Bring tequila, triple sec, salt, and a bag of limes and you can throw the best rita party on Pluto.]

The Tropics of Pluto

“Pluto is a very complicated place,” said Richard Binzel, a professor at MIT and a co-investigator of the New Horizons mission. “We’ve been trying to go back to basics to see how seasons and climate might be shaping Pluto.”

Scientists have worked out the location and nature of Pluto’s tropics—a concept that might seem unlikely on a frozen planet 6 billion kilometers from the Sun. To understand what “tropics” means in this context, consider the axial tilt of the Earth, which is 23.5 degrees. The tilt is the reason that our planet experiences seasons, and over the course of a year, the Sun is directly over one of any latitude between the Tropic of Cancer (23.5 degrees north) and the Tropic of Capricorn (23.5 degrees south). That’s why the tropics are known for their warm weather.

For comparison, Pluto’s axial tilt is 120 degrees. This makes the range of tropical latitudes much broader than Earth's... Moreover, just as the axial tilt of the Earth gives us arctic circles with their attending stretches of dark winter or midnight Sun, Pluto's extreme tilt creates arctic circles as well—circles that reach nearly to its equator. “If Earth were tilted by same amount as Pluto, we [in Texas] would be in the arctic zone on Earth," Binzel said. A result of the overlapping arctic and tropical zones is that Pluto actually has "tropical arctic" bands.

The Plan to Send a Submarine to Titan, Saturn's Largest Moon

Here is an actual problem that scientists have tackled, not as consultants for some sure-fire science fiction blockbuster, but rather, in order to put together a very real NASA mission: How do we launch a submarine into space, send it to another world, and drop it into an extraterrestrial lake?

As it turns out, a lot of work on the problem has already been done. The traditional shape of a submarine doesn't lend itself to the classic entry shell seen previously with the Mars landers. The Titan submarine team soon realized, however, that the submarine would fit quite nicely inside the cargo bay of a scaled-down space shuttle. Better still, DARPA—the Defense Advanced Research Projects Agency—has already built a scaled-down space shuttle, and it's flying today. It is called the X-37B—and the submarine would fit inside it.

The entry velocities for a mission to Titan would be the same as Earth orbital velocities, something the X-37B and its thermal protection can already handle. ("For [this phase of] the study, we just said, 'Sure, we could make that work,'" Lorenz explained at the forum.) Such an entry vehicle would be especially useful in that it could fly to a designated spot without dealing with the winds and consequent uncertainties that a typical parachute descent entry would have to overcome.

Next, the Titan team considered extracting the submarine from the back of the vehicle, much in the same way the U.S. Air Force pushes a MOAB from a C-130. They also looked at ditching tests conducted by NASA in the event that the space shuttle would ever have to land on water. A splashdown on Titan of their spacecraft, they found, would be quite forgiving, and if they attempted such a landing, they could simply flood the entry vehicle, let it sink, open the back, and let the submarine swim out into the sea. From there, the vehicle would conduct preliminary sea trials to discern maneuverability, and then get underway.

[Blog note: Ralph Lorenz, the project scientist on the mission study, had a magnificent quote that's elsewhere in the piece, but that I wanted to share here: "The virtue of this study is that you just need to say those words—Titan submarine—and everyone kind of gets that it's out there, it's interesting, and there's a lot of exciting potential."]