Hello #LPSC2017

This year I will be covering the Lunar & Planetary Science Conference for now.space and mental_floss, and will add things I write there to this post. In the meantime, if I'm set to interview you there and you're wondering what else I've written, here are a few pieces that might help you along.

UPDATE: Well this is much delayed, but here are a few pieces I wrote from LPSC.

Pluto as Planetary Science Coming of Age
now.space

When Every Planet Is Funded but Your Own
now.space

How Venus Will Get Its Groove Back
now.space

How the Europa Lander Will Search for Life
mental_floss

Comet 67P Changed as It Approached the Sun
mental_floss

Previously:

Why Is Nasa Neglecting Venus?
The Atlantic

A generation has now gone by since the agency set a course for the second planet from the Sun, and with this latest mission opportunity lost, the earliest an expedition there might launch (from some future selection process) would be 2027—nearly 40 years since our last visit.

For centuries, it would have been inconceivable that Venus would be in such a predicament. In the 18th century, Venus was the organizing force in international science. When humanity was finally able to stretch its arms toward the solar system, the first place it reached for was Venus. It was our first successful planetary encounter beyond Earth, and was the first planet on which humans crashed. It would later would host our first graceful landing.

Venus and Earth are practically twins. They’re alike in size, density, gravity, and physical makeup. They are both in our star’s habitable zone. Scientists have discovered no other adjacent planets in the entire galaxy that share such similarities. And yet somewhere along the way, Earth became a cosmic paradise for life as we know it, and Venus became a blistering hellscape. Beneath its sienna clouds of sulfuric acid is the greenhouse effect gone apocalyptic. At 850 degrees Fahrenheit, its surface is hotter than Mercury, though the planet itself is much farther from the Sun. A block of lead would melt on the surface of Venus the way a block of ice melts on Earth.

The Odyssey of OSIRIS-REx
The Week

Until "Liftoff!" nothing happens, and then everything happens. The billowing smoke, the white fire, the upward movement of the launch vehicle — it happens immediately and all at once. The fire is one long continuous and controlled explosion, but the word and attendant imagery — explosion — never enters the onlooker's mind. What you see is the opposite of an explosion. What you see is control. Total and utter control and focus. The rocket's fiery tail, it's not even fire. It is a prize fighter working a speedbag. Such focus! Such control! The rocket, its motion is somehow nauseating, not because it lacks grace, but because it possesses so much of it. You light a bottle rocket, and you hear sssssssss and then sssshhhhhwwwwwww as it suddenly zips into the sky. The Atlas 5, though, rises slowly, a methodical rejection of gravity. It is a ballerina. Grace. Grace.

The tail of flame is about as long as the rocket itself, but it is not orange. It's not even fire, really, as you understand fire to be. It is white. It hurts the eyes. It's like staring at a concentrated burst of manufactured sun. It's not the flamethrower's discharge, but that of the welding torch. It is blinding. It doesn't billow. It's all business, this white welding torch. So pure and focused and controlled.

The smoke is produced by ignited liquid oxygen and liquid kerosene. It is the color of cigarette smoke, and at ignition it shrouds the launch complex bottom to top, pad to candlestick-like lightning rods. The rocket rises above. The smoke follows the rocket up. It's a skywriter, this thing, drawing smoothly some great, fine arc to heaven. The higher it gets, the whiter the smoke, purer, purer, purer, until at last it seems humankind has surpassed the cloud itself as an object of stainless wonder against a curtain of blue.

How a Tiny Moon Rover Might Change the Course of Human Exploration
now.space

When explorers roamed the New World, they didn’t set foot on uncharted lands and unload from their ships lumber and food. They didn’t send for armadas back home, asking for fresh supplies to stay well fed and in warm beds. Rather, settlement required the necessities of life to be hewn or harvested, and what they unloaded from ships were tools and seed. It was called the Age of Discovery, but it was as well the age of cultivation, the age of construction, the age of contrivance, and, yes, the age of conquest.

We live today in the New Age of Discovery, with explorers like Alan Stern and Lindy Elkins in the roles of James Cook or Bartolomé, and New Horizons and Psyche are our plucky robotic vessels pressing forth into the unknown. As human spaceflight completes its interim retooling for its own push into the final frontier, the requirements for settlement remain unchanged from centuries gone by. You can’t bring with you everything you will need. Survival in the wilderness means subsistence farming and dogged resourcefulness. But how do you do that on another planet?

NASA’s working on it, and the first critical step is a project called Resource Prospector. If their plan works, humanity might one day look back on Resource Prospector as the mission that launched a thousand ships and forever changed the course of human exploration.