A Few Happenings in the Cosmos

While covering the 47th Lunar and Planetary Science Conference in The Woodlands, Texas last month, I wrote several pieces on various happenings and findings in and about our solar system. Here are a few snippets of pieces that resulted, published by mental_floss. (And let me just add that if you've never had to explain nuclear spectroscopy for a general readership, you just haven't lived yet.) Every Inch of Ceres Is Now Mapped—and Yet Mysteries Remain

Dawn is loaded with delicate instruments to help decipher the dwarf planet's secrets. The Gamma Ray and Neutron Detector (GRaND) maps elements on the asteroid so that scientists can make sense of the surface and processes at work. The instrument works like this. Galactic cosmic rays smack into the regolith (the loose surface layer; on Earth, think: dirt), and interactions with the surface lead to emissions of neutrons and gamma rays. GRaND detects these emissions as they bounce into space. Neutrons at different energy levels correspond to different surface elements.

During the regolith interaction, when the cosmic rays hit the nucleus of an atom, the nucleus explodes, sending neutrons and protons in all directions. Some neutrons escape the regolith, some smash into other nuclei. Here's where it gets interesting. If a neutron hits the nucleus of a hydrogen atom, it loses energy in the interaction, similar to the way a cue ball stops when it hits another ball in a game of pool. When GRaND is counting neutrons, therefore, lower numbers suggest more hydrogen.

That's what is shown on the above map [not pictured in this blog snippet—dwb], which is color-coded for the presence of hydrogen. (Blue is more; red is less.) The area in blue is the north pole of Ceres, and as the map reveals, it's teeming with hydrogen, relatively speaking. This indicates the presence of water ice—H2O—near the dwarf planet’s surface. This is the first time such ice has been detected, and the finding is consistent with longstanding scientific predictions. Planetary scientists will continue analyzing the data collected by GRaND and other instruments in order to better understand the origin and evolution of Ceres.

5 Space Missions Under NASA Consideration

You have to admire the effort it took to build the acronym VERITAS, which is short for Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy. VERITAS is a proposed mission to visit Venus and figure out where things went so wrong. Above the clouds, Venus is far more hospitable to humans than Mars. Its temperature and weather aren't all that different from Earth, and scientists have proposed colonizing Venus with a series of airships. Below the clouds, however, Venus is a living hell. With surface temperatures near 900°F, it's hotter than Mercury, and its south pole is consumed by a rapacious, undying superstorm. The questions VERITAS intends to answer involve the state of Venus's geologic activity; its tectonic characteristics in comparison to Earth; and the evidence of past water at its surface.

[Blog note: My favorite line in the piece was cut, and I'll share it here: "Venus is the place where people in hell are afraid they'll go when the die."]

What is an Ice Volcano?

Think back to the volcano diorama you made in grade school. Little mountain, maybe trees and plastic dinosaurs (because every grade school project is improved with dinosaurs). In our model, red food coloring, baking soda, and vinegar are meant to simulate what's going on when a volcano erupts. Magma, which is molten rock and volatiles, builds up pressure until the ground gives way and it spews forth from vents in the Earth's surface.

This sometimes looks like the occasional, seemingly apocalyptic eruptions of Volcán de Colima in Mexico. Sometimes it looks like the gentle flows in the Pacific islands where you can hire a tour guide and observe lava streams as they roll along.

A cryovolcano isn't all that different. Like an Earth volcano, it results from pressure beneath a celestial surface. Rather than molten rock, however cryovolcanoes are the eruptions of molten ice, sometimes called cryomagma. Ice volcanoes can erupt violently or flow gently, just like the volcanoes on Earth. The gentle "tour guide" eruptions are believed to be like flowing slurries.

[Blog note: Bring tequila, triple sec, salt, and a bag of limes and you can throw the best rita party on Pluto.]

The Tropics of Pluto

“Pluto is a very complicated place,” said Richard Binzel, a professor at MIT and a co-investigator of the New Horizons mission. “We’ve been trying to go back to basics to see how seasons and climate might be shaping Pluto.”

Scientists have worked out the location and nature of Pluto’s tropics—a concept that might seem unlikely on a frozen planet 6 billion kilometers from the Sun. To understand what “tropics” means in this context, consider the axial tilt of the Earth, which is 23.5 degrees. The tilt is the reason that our planet experiences seasons, and over the course of a year, the Sun is directly over one of any latitude between the Tropic of Cancer (23.5 degrees north) and the Tropic of Capricorn (23.5 degrees south). That’s why the tropics are known for their warm weather.

For comparison, Pluto’s axial tilt is 120 degrees. This makes the range of tropical latitudes much broader than Earth's... Moreover, just as the axial tilt of the Earth gives us arctic circles with their attending stretches of dark winter or midnight Sun, Pluto's extreme tilt creates arctic circles as well—circles that reach nearly to its equator. “If Earth were tilted by same amount as Pluto, we [in Texas] would be in the arctic zone on Earth," Binzel said. A result of the overlapping arctic and tropical zones is that Pluto actually has "tropical arctic" bands.

The Plan to Send a Submarine to Titan, Saturn's Largest Moon

Here is an actual problem that scientists have tackled, not as consultants for some sure-fire science fiction blockbuster, but rather, in order to put together a very real NASA mission: How do we launch a submarine into space, send it to another world, and drop it into an extraterrestrial lake?

As it turns out, a lot of work on the problem has already been done. The traditional shape of a submarine doesn't lend itself to the classic entry shell seen previously with the Mars landers. The Titan submarine team soon realized, however, that the submarine would fit quite nicely inside the cargo bay of a scaled-down space shuttle. Better still, DARPA—the Defense Advanced Research Projects Agency—has already built a scaled-down space shuttle, and it's flying today. It is called the X-37B—and the submarine would fit inside it.

The entry velocities for a mission to Titan would be the same as Earth orbital velocities, something the X-37B and its thermal protection can already handle. ("For [this phase of] the study, we just said, 'Sure, we could make that work,'" Lorenz explained at the forum.) Such an entry vehicle would be especially useful in that it could fly to a designated spot without dealing with the winds and consequent uncertainties that a typical parachute descent entry would have to overcome.

Next, the Titan team considered extracting the submarine from the back of the vehicle, much in the same way the U.S. Air Force pushes a MOAB from a C-130. They also looked at ditching tests conducted by NASA in the event that the space shuttle would ever have to land on water. A splashdown on Titan of their spacecraft, they found, would be quite forgiving, and if they attempted such a landing, they could simply flood the entry vehicle, let it sink, open the back, and let the submarine swim out into the sea. From there, the vehicle would conduct preliminary sea trials to discern maneuverability, and then get underway.

[Blog note: Ralph Lorenz, the project scientist on the mission study, had a magnificent quote that's elsewhere in the piece, but that I wanted to share here: "The virtue of this study is that you just need to say those words—Titan submarine—and everyone kind of gets that it's out there, it's interesting, and there's a lot of exciting potential."]

Hello #LPSC2016 Readers!

This is my second year covering the Lunar and Planetary Science Conference, an annual gathering in Houston, Texas of the world's planetary scientists. Most of my coverage will appear at mental_floss, and I'll post links as they go live. I suspect if you've arrived here, it's from one of my m_f pieces. If you enjoyed that work, here are a few pieces of note that I've written about planetary science and external issues affecting the field. The Scientists Who Conquered PlutoThe Week

We know well the way astronauts think because we've studied them for so long — lionized them, rightfully, in books and movies and on television. We understand the human adventure. We understand that astronauts train hard and while in space live in pretty miserable conditions. But we also understand the glory of being an astronaut. They are humanity's ambassadors. They are exploring the final frontier. They've played golf on the moon! But what of these people — the New Horizons people, these spacecraft pilots and planetary scientists who study the outer reaches of the solar system? What can be made of them? Alice Bowman said the words, "We are outbound from Pluto." Has a more breathtaking string of words ever been uttered?

Our Golden Age of Space Exploration, The Week

The lighting of Pluto is a coming of age for humankind. It is the end of one thing — proving that we can visit any world we so choose — and the beginning of something profound: looking outward, beyond the orbits of the planets, with an eye toward active exploration. Contrary to common lamentations, NASA is not an agency flush with cash (its total budget takes up less than one half of one percent of the federal budget), and it is not an agency adrift. We are, in fact, living in a golden age of space exploration. In a five-year span, humanity will have visited the farthest planet in the solar system and set a course for the Kuiper Belt (long hypothesized, but only discovered in 1992); executed a hair-raising entry, descent, and landing of the Mars Science Laboratory; and rewritten the books on Mercury and Saturn, based on the astonishing discoveries of MESSENGER and Cassini, respectively.

When Congress Puts NASA on Hold, Planets Don't Wait, The New York Times

Two years ago, NASA’s Mars Atmosphere and Volatile Evolution (Maven) spacecraft, a $671 million mission to study the composition of the Martian upper atmosphere, sat at Kennedy Space Center ready to go to space, but with no one there to push the button. Congress and the Obama administration were competing to see who would blink first, but the planets weren’t waiting. If Maven didn’t lift off before the close of its launch window, the position of Mars relative to Earth would force a launch delay of 26 months. This would have had repercussions for Mars missions subsequent to Maven, as well as for scientists awaiting data for study and analysis.

NASA's Spaceship Factory, mental_floss

Michoud looks like a place where things are built. Spacecraft, yes, and rockets—the biggest ever imagined—but things all the same. With only slight changes, it could be a place where cars are manufactured, or supercomputers, or valves, or motors. Michoud is like the world's greatest high school metal shop, only instead of turning wrenches to automatic transmissions, the men and women here apply tools to spacecraft. Sheets of metal roll in the front door, and spaceships and rockets roll out the back.

The facility is located on the outskirts of New Orleans, amidst vast footprints of vacant land. Across the street from Michoud is a Folgers Coffee plant, leaving the air outside redolent with the soft bitterness of a newly opened bag of ground coffee. That itself is striking—the mix of coffee, concrete, cars, and cranes. This is where science fiction is realized, and it's all so normal. The workers here are some of the smartest people in the world doing some of the most challenging and important work in the world, but they seem like true workers in the grandest human sense of the word, the kinds of men and women otherwise seen with sleeves rolled up on wartime propaganda posters. Together we can do it! Keep 'em firing!

Mark Kirasich, the program manager of Orion, described the Orion team as the "craftsmen of the 21st century." In some beautiful future of humanity, this is the job where blue collar men and women punch in at 9, ply their trade, punch out, and grab beers before flying home on jetpacks. Today they build Orion spacecraft and the Space Launch System rockets that will take them into space. Previously, they built the 15-story external fuel tanks for the space shuttle, and the first stage of the Saturn V rockets that sent men to the Moon.